St. Jude unlocks mystery of very aggressive leukemia
EurekAlert
The Hindu, India
____________
Investigators at St. Jude Children's Research Hospital have used mouse models to determine why some forms of acute lymphoblastic leukemia (ALL) are extremely aggressive and resist a drug that is effective in treating a different type of leukemia.
The investigators found that the combination of a mutation called Bcr-Abl and the loss of both copies of the tumor suppressor gene Arf in bone marrow cells triggers an aggressive form of ALL. Inactivation of both Arf genes facilitated the multiplication of leukemic cells that did not respond to the drug imatinib (GleevecĀ®). Imatinib is already successfully used to treat chronic myelogenous leukemia (CML), another blood cell cancer caused by the Bcr-Abl mutation.
The St. Jude study provided evidence that imatinib resistance in mouse models of ALL did not depend strictly on the presence of Bcr-Abl and the loss of Arf genes in the cancer cells themselves. Rather, drug resistance reflected an interaction of the tumor cells with specific growth-promoting factors produced in the mice. After removal of leukemic cells from mice that had failed imatinib therapy, compounds inhibiting enzymes called JAK kinases restored the cells' imatinib sensitivity.
Apr 21, 2006
EurekAlert
The Hindu, India
____________
Investigators at St. Jude Children's Research Hospital have used mouse models to determine why some forms of acute lymphoblastic leukemia (ALL) are extremely aggressive and resist a drug that is effective in treating a different type of leukemia.
The investigators found that the combination of a mutation called Bcr-Abl and the loss of both copies of the tumor suppressor gene Arf in bone marrow cells triggers an aggressive form of ALL. Inactivation of both Arf genes facilitated the multiplication of leukemic cells that did not respond to the drug imatinib (GleevecĀ®). Imatinib is already successfully used to treat chronic myelogenous leukemia (CML), another blood cell cancer caused by the Bcr-Abl mutation.
The St. Jude study provided evidence that imatinib resistance in mouse models of ALL did not depend strictly on the presence of Bcr-Abl and the loss of Arf genes in the cancer cells themselves. Rather, drug resistance reflected an interaction of the tumor cells with specific growth-promoting factors produced in the mice. After removal of leukemic cells from mice that had failed imatinib therapy, compounds inhibiting enzymes called JAK kinases restored the cells' imatinib sensitivity.
Apr 21, 2006